文章编号: 0253-2697(2024)01-0115-18 DOI: 10.7623/syxb202401007

三塘湖盆地油气勘探开发新领域、新类型及资源潜力

支东明1 李建忠1 周志超2 焦立新2 范谭广2 李 斌2 梁 辉2 王兴刚2

(1. 中国石油吐哈油田公司 新疆哈密 839009; 2. 中国石油吐哈油田公司勘探开发研究院 新疆哈密 839009)

摘要:过去 30年,三塘湖盆地在侏罗系低压砂岩油藏、二叠系凝灰岩油藏和石炭系火山岩风化壳油藏的油气勘採开发中取得了重要进展,探明石油地质储量为1.68×10⁸t,建成56×10⁴t/a的原油产能。三塘湖盆地剩余油气资源潜力大,但已採明未动用储量不足,需要落实油气勘探开发新领域和新类型,实现新的发现和突破,支撑稳健可持续的油气生产。基于盆地构造、烃源岩分布、储层特征研究及煤岩实验取得的认识,提出了南部冲断带、洼陷区页岩油、源边粗碎屑油藏和石炭系火山岩内幕型油藏4个新领域,其石油地质资源量分别为0.86×10⁸t、2.45×10⁸t、0.69×10⁸t和0.96×10⁸t,以及侏罗系西山窑组煤层气和八道湾组富油煤2种新类型,其煤层气资源量为1427×10⁸m³,焦油资源量为60.20×10⁸t,资源潜力大,勘探开发前景广阔。根据勘探程度、地质条件和开发技术,按照战略展开、战略突破和战略准备3个层面进行了部署安排。

关键词:资源潜力;勘探开发;前陆冲断带;页岩油;火山岩油藏;煤基油气;三塘湖盆地 中图分类号:TE132.1 **文献标识码:** A

New fields, new types and resource potentials of oil-gas exploration and development in Santanghu Basin

Zhi Dongming¹ Li Jianzhong¹ Zhou Zhichao² Jiao Lixin² Fan Tanguang² Li Bin² Liang Hui² Wang Xinggang²

(1. Petrochina Tuha Oil field Company, Xinjiang Hami 839009, China;

2. Research Institute of Exploration and Development, PetroChina Tuha Oilfield Company, Xinjiang Hami 839009, China)

Abstract; Over the past 30 years, significant progress has been made in the oil-gas exploration and development of Jurassic low-pressure sandstone reservoirs, Permian tuff reservoirs, and Carboniferous volcanic weathering crust reservoirs in Santanghu Basin, with the proved geological reserves of 168×10^8 t and a production capacity of crude oil of 56×10^4 t/a. The remaining oil-gas resources in Santanghu Basin have great potentials, but the proved unused reserves are insufficient. It is necessary to expand new fields and implement new types of oil-gas exploration and development, so as to achieve new discoveries and breakthroughs, and support stable and sustainable oil-gas production. Based on the understandings from the recent research on basin structure, source rock distribution, reservoir characteristics, as well as coal rock experiment, four new fields are proposed, i. e., southern thrust belt, shale oil in subsag areas, megaclast reservoirs at the near-source margin, and interior reservoirs in Carboniferous volcanics, with the petroleum geological resources of 0.86×10^8 t, 2.45×10^8 t, 0.69×10^8 t and 0.96×10^8 t, respectively. Also, two new types are proposed, i. e., coalbed methane in Jurassic Xishanyao Formation and tar-rich coal in Badaowan Formation, with the coalbed methane resources of 1427×10^8 m³ and tar resources of 60.1×10^8 t, respectively. There is great resource potentials and broad prospects for exploration and development. Based on the hydrocarbon exploration degrees, geological conditions, and development technologies, deployments and arrangements were made at three levels, i. e., strategic deployment, strategic breakthrough, and strategic preparation.

Key words: resource potential; exploration and development; foreland thrust belt; shale oil; volcanic reservoirs; coal-based oil-gas; Santanghu Basin

- 引用:支东明,李建忠,周志超,焦立新,范谭广,李斌,梁辉,王兴刚.三塘湖盆地油气勘探开发新领域、新类型及资源潜力[J].石油 学报,2024,45(1):115-132.
- Cite : ZHI Dongming, LI Jianzhong, ZHOU Zhichao, JIAO Lixin, FAN Tanguang, LI Bin, LIANG Hui, WANG Xinggang. New fields, new types and resource potentials of oil-gas exploration and development in Santanghu Basin[J]. Acta Petrolei Sinica, 2024, 45(1): 115-132.

第一作者及通信作者:支东明,男,1971年1月生,2009年获西南石油大学硕士学位,现为中国石油吐哈油田公司教授级高级工程师,主要从事石油 天然气地质综合研究及油气勘探开发管理工作。Email:zhidm@petrochina.com.cn

基金项目:新疆维吾尔自治区科学技术厅"天山英才"培养计划科技创新领军人才项目"北疆地区二叠系超级盆地全油气系统地质理论研究与战略接 替领域优选"(2022TSYCLJ0070)和中国石油天然气股份有限公司前瞻性基础性技术攻关项目"含煤盆地富油煤岩石物理响应与测井方法 研究"(2021DJ3805)资助。

三塘湖盆地前期的油气勘探开发主要集中在构造 稳定的凹陷区和中一浅层,但新领域、新区带、新层系也 具有很大的勘探潜力^[1]。为实现三塘湖盆地油气资源 的有序接替,推动新领域和新类型的油气勘探开发进 程,笔者针对盆地南部冲断构造复杂区、页岩油、中一深 层和煤基油气资源,开展了构造分析、烃源岩落实、沉积 储层刻画和煤岩实验等研究,提出了南部山前冲断掩伏 带大构造、洼陷区页岩油、源边粗碎屑油藏、石炭系火山 岩内幕型油藏、富油煤及煤层气6个勘探开发新领域及 新类型,明确勘探思路和节奏,以期为三塘湖盆地油气 勘探开发的可持续发展和战略接替指明方向。

1 区域地质及油气勘探开发简况

三塘湖盆地位于新疆东北部,面积约为23000 km², 呈 NW—SE 狭长带状夹持于阿尔泰山系和天山山系 之间(图 1),是在古生代造山褶皱基底之上叠合发育 的晚古生代一中新生代陆内沉积盆地^[2-3]。盆地周缘 出露泥盆系和下石炭统火山-沉积岩系基底。钻探揭 示,盆地内部主要地层为上石炭统、中二叠统、中一上 三叠统、侏罗系、白垩系和新生界^[4]。

Fig. 1 Tectonic units of Santanghu Basin and the oil-gas exploration achievements of Tiaohu-Malang sags

三塘湖盆地的油气钻探始于 1993 年,钻井和油气发 现主要集中在盆地中部的条湖凹陷和马朗凹陷(图 1)。 三塘湖盆地围绕上石炭统哈尔加乌组、中二叠统芦草 沟组和中一上三叠统小泉沟群 3 套烃源岩,发育形成 下、中、上 3 个含油气系统;纵向上,9 个层组获得工业 油气流(图 2),共发现 30 多个油气藏和含油气构造; 相继取得了中生界砂岩、石炭系火山岩和二叠系致密 油及页岩油 3 个亿吨级油气藏的勘探发现,累计落实 三级石油地质储量 3.32×10⁸t,其中,探明石油地质储 量 1.68×10⁸t^[5]。根据第四次油气资源评价结果,三 塘湖盆地的石油资源量为 9.1×10⁸t,石油资源探明率 为18.4%,处于早期勘探阶段,具备持续勘探潜力^[6]。 截至2022年底,累计生产原油500余万吨,平均采出 程度为5.07%,采出程度低。

三塘湖盆地的油气藏类型复杂多样,包括中生界 常规砂岩油气藏和石炭系一二叠系火山岩、凝灰岩及 页岩油等非常规油藏,勘探开发历程大致可划分为6 个阶段(图 3)。

1.1 区域普查阶段(1953-1991年)

该阶段通过1:200000地质调查、1:200000重 力普查、1:200000航磁测量和1:400000电法勘探, 初步查明了盆地周缘地层系统和地层分布,明确了盆

地基本构造特征,将盆地划分为南部冲断带、中部坳陷 带和北部隆起带,提出了中部坳陷带"五凹四凸"是油 气勘探的有利地区。

1.2 区域详查阶段(1992-1994年)

该阶段通过大规模二维地震测线采集,在盆地内 部发现了一系列正向构造,随后在条湖凹陷、汉水泉凹 陷和马朗凹陷分别钻探了参数井 TC1 井、TC2 井和 TC3 井,完钻层位均为石炭系。TC1 井钻探揭示了条 湖凹陷中一上三叠统小泉沟群煤系烃源岩和北小湖鼻 凸带下侏罗统八道湾组常规砂岩油藏^[5],发现了三叠 系一侏罗系油气成藏组合。TC2 井未揭示有效烃源岩。 TC3 井小泉沟群烃源岩不发育,但发现了上石炭统哈尔 加乌组和中二叠统芦草沟组成熟优质烃源岩,上石炭统和中二叠统油气显示丰富,但试油仅见油花。

1.3 区域勘探阶段(1995-2006年)

该阶段通过三维地震勘探,基本落实了盆地内部 的主要构造。区域预探始于 1996 年,M1 井在马朗凹 陷牛圈湖构造带发现了中二叠统芦草沟组页岩油藏、 中侏罗统西山窑组及头屯河组低压砂岩油藏、上侏罗 统齐古组天然气藏,油源来自芦草沟组^[5]。同年,M2 井在西峡沟构造带发现了中二叠统条湖组火山岩风化 壳油藏。2006 年,M17 井在牛东构造带发现了上石炭 统卡拉岗组火山岩风化壳油藏^[7],此为构造-地层型油 藏^[8],油源来自于下部的哈尔加乌组^[9]。自此,落实了 盆地内二叠系一侏罗系油气成藏组合和上石炭统油气 成藏组合。

1.4 评价和开发阶段(2007-2011年)

该阶段通过评价中生界砂岩油藏,累计落实约 1.00×10⁸t 三级石油地质储量。除北小湖油田的油藏 位于下侏罗统八道湾组外,主体油藏位于中侏罗统西 山窑组,少量位于中侏罗统头屯河组和中一上三叠统 小泉沟群,牛圈湖构造带探明上侏罗统齐古组天然气 地质储量为13.6×10⁸m³。该阶段的开发建产以西山 窑组为主,油藏具有低压、低孔、低渗的特征。为解决 直井产量低的问题,发展形成了水平井井网超前注水、 整体压裂的开发方式,已实现效益动用和持续稳产,标 定采收率为18.0%,采出程度为7.8%。

此外,通过评价中二叠统条湖组和上石炭统卡拉 岗组火山岩油藏,新发现哈尔加乌组火山岩油藏,累计 落实约 1.50×10⁸t 的三级石油地质储量,储量主体位 于卡拉岗组。开发动用以牛东油田卡拉岗组火山岩风 化壳油藏为主,直井初期产量高,但递减快。通过建设 水平井井网、实施大型体积压裂实现了有效开发动用, 标定采收率为 15.0%,采出程度为 4.8%。

1.5 下洼勘探开发阶段(2012-2017年)

2012年开始下挂勘探,LU1 井在马朗凹陷马中构 造带条湖组发现了凝灰岩致密油藏^[10-12],后评价落实 探明石油地质储量约为 37×10⁶t。油源主要来自于下 部的芦草沟组,同时也有少许的本地供源^[13]。条湖组 凝灰岩致密油藏在直井常规测试中无自然产能或低 产,压裂可以获得较高的产量,但稳产时间短,累计产 油少^[14]。该阶段形成了水平井+体积压裂、单井注水 吞吐、井组渗析+驱替和 CO₂ 井组渗驱协同的开发技 术路线,储量得到有效动用,原标定采收率为 5.5%, 因技术进步使得采出程度达 6.3%。

1.6 页岩油开发技术攻关阶段(2018年至今)

自 1997 年 M1 井发现芦草沟组页岩油藏开始,至

2011年仍处于正向构造带直井探索阶段,并先后发现 了 M6、M7、M9 等多个含油构造。2012年,马中构造 带相继部署 ML1 井、ML2 井和 LY1 井等井以探索洼 陷区页岩油,虽然油气显示丰富,直井获得油流,但未 能建成产能^[15]。2017年,石板墩构造带部署的 T34 井获得页岩油勘探突破,纵向上揭示了 9 个储层"甜点 层",单个"甜点"的厚度为 4.3~20.0 m。2018年以 来,T34 块和 M1 块设立了页岩油开发技术攻关试验 区,共钻探水平井 23 口,平均水平段长为 1 100 m,平 均油层钻遇率为 84%。按照"水平井细分切割 + 大型 体积压裂"思路进行储层改造,1 年期的平均产油量为 9.3 t/d,建产的产量为 7.0×10⁴t/a。截至 2022年底, 累计生产原油 14.0×10⁴t,标定采收率为 5.9%,采出 程度为 0.7%。

2 油气地质特征

2.1 盆地构造特征

火山岩地球化学分析表明,三塘湖盆地早石炭世 发育典型的弧火山岩^[16],为克拉麦里洋向北俯冲的产 物^[3]。该套火山岩经历了造山褶皱作用,当前被当作盆 地基底对待^[4]。上石炭统哈尔加乌组和中二叠统条湖组 发育陆内火山岩,形成于伸展构造背景^[4,17]。盆地内部缺 失下二叠统和上二叠统 - 下三叠统^[11,18-19]。中二叠统与 下部石炭系呈不整合接触,表明晚石炭世和中二叠世两 期伸展作用不连续。中二叠统与中—上三叠统之间的不 整合面对应早三叠世区域挤压抬升构造作用^[20],之后在 中生代—新生代多期挤压构造作用影响下,形成了现今 盆地形态及复杂的盆地结构和构造样式。

2.1.1 盆地构造样式分析

三塘湖盆地构造格局总体上受控于一系列反倾 的、NW-SE 走向为主的逆断层,发育南、北双向对冲 构造体系(图 4),导致盆地在南北向上具有构造分带 特征,由南向北依次发育南部冲断带、中央坳陷区和北 部隆起带。南部冲断带主要受控于 NW-SE 走向、南 倾的白依山断层,该断层为大型的逆断层。在盆地东、 西两侧,白依山断层的断面陡倾,断层上盘发育基底卷 入式厚皮构造,下盘掩伏带的宽度窄。在盆地中部,白 依山断层的断面较为平缓,断层上盘发育宽阔的楔形 逆掩推覆体,推覆体主体为石炭系火山岩,顶部直接出 露于地表或覆盖新近系和第四系;断层下盘构造宽缓, 构造宽度最大可达 20 余千米,发育逆冲叠瓦构造和冲 起构造,形成多排断背斜及断块构造。北部隆起带主 要受控于 NW-SE 走向、北倾的大型逆断层,其断面 陡倾,断层上盘石炭系直接出露于地表或覆盖数十米 的新近系和第四系,断层下盘掩伏带的宽度窄。中央

坳陷区的逆冲推覆作用相对较弱,发育次级逆断层及 相关构造,局部可见浅层滑脱构造。盆地现今的构造 形态是中生代一新生代挤压构造叠加改造的结果,但 晚石炭世和中二叠世的两期伸展构造通过地震资料难 以刻画,控沉积正断层在地震剖面上难以识别和追踪, 未发现大型的铲式正断层(图 4)。

组;P2l一芦草沟组;C2一上石炭统;C2k一卡拉岗组;C2h一哈尔加乌组。

图 4 三塘湖盆地地震解释剖面(剖面位置见图 1) Fig. 4 Seismic interpretation section of Santanhu Basin

2.1.2 构造期次及构造层

三塘湖盆地共识别出 3 个大型的角度不整合 面(图 4),分别为:①中一上三叠统底界,为大型削截 和超覆界面,凹陷北部最大剥蚀厚度超过 600 m;②白 垩系底界,在马朗凹陷东南部见大规模向南和东南超 覆的现象;③新生界底界,为大型削截界面,分布在凹 陷两侧,最大剥蚀厚度超过 2000 m。结合火山岩地球 化学研究认识,三塘湖盆地在晚古生代造山作用后经 历了晚石炭世和中二叠世 2 期伸展构造作用以及早三 叠世、早白垩世和新生代 3 期挤压构造作用。盆地在 纵向上发育 5 个构造层,分别为:①上石炭统,包括哈 尔加乌组和卡拉岗组,其地层厚度变化受火山机构及 火山地貌控制;②中二叠统,包括芦草沟组和条湖组, 其地层南厚北薄;③中上三叠统一侏罗系,其地层北厚 南薄;④白垩系,厚度中心位于凹陷中部;⑤新生界,盆 地地形呈南高北低。

2.2 烃源岩特征

2.2.1 哈尔加乌组烃源岩

三塘湖盆地哈尔加乌组发育陆上和水下两种火山 喷发环境,在水下火山喷发岩体之间形成的火山洼地沉 积了最厚百余米的灰黑色泥岩,其总有机碳(TOC)含量 平均为5.6%,生烃潜量(S₁ + S₂)平均为18.2 mg/g,为 优质烃源岩。有机质来源主要为低等浮游植物和细 菌,有机显微组分以腐泥组为主^[21],有机质类型以 I一Ⅱ₁型为主^[22],主体达到成熟热演化阶段,深洼区 已达到高成熟热演化阶段^[23]。盆地内部已有50口井 钻揭哈尔加乌组。钻井揭示,汉水泉凹陷、条湖凹陷 及马朗凹陷北部、方方梁凸起、苇北凸起和淖毛湖凹 陷的哈尔加乌组主要发育棕红色、褐色火山岩和火 山碎屑岩,形成于陆上喷发环境,不具备烃源岩发育 条件。全盆地仅在条湖凹陷和马朗凹陷中南部的哈 尔加乌组中发育水下火山喷发,在火山洼地中形成 了规模烃源岩,其平面分布呈团块状,最大实钻厚度 为130m,分布面积为1820km²[图5(a)]。围绕马朗 凹陷牛东地区的哈尔加乌组烃源岩灶,井控落实的源 岩面积为178km²,勘探发现了牛东油田,探明石油地 质储量为6650×10⁴t。

盆地边界 隆坳边界 凸起边界 R₀/% 推覆体北 控盆断层 边界
 图 5 三塘湖盆地哈尔加乌组、芦草沟组和小泉沟群烃源岩厚度

Fig. 5 Source rock thicknesses of Haerjiawu Formation, Lucaogou Formation and Xiaoquangou Group in Santanghu Basin

2.2.2 芦草沟组烃源岩

根据沉积及岩电特征,三塘湖盆地芦草沟组在纵向上划分为3段,由下到上分别为芦草沟组一段(芦一段)、芦草沟组二段(芦二段)和芦草沟组三段(芦三 段)^[18]。芦一段和芦三段的沉积水体较浅,水体盐度 为淡水,有机质丰度低且类型差,不具备生烃条件。芦 二段的沉积水体较深,水体盐度为半咸水,有机质丰度 普遍大于1%,有机质类型为I一II1型,发育优质烃 源岩^[18,24]。芦二段是火山灰和碳酸盐矿物的混合沉 积,主要矿物成分为白云石、石英、长石及部分方解石, 黏土矿物含量低。有机质丰度与长英质矿物含量呈正 比,与碳酸盐矿物含量呈反比^[25],碳酸盐成分起到稀 释有机质堆积的作用^[26]。

芦二段并非在全盆广泛分布,而是集中在条湖凹陷和 马朗凹陷中南部,厚度上具有南厚北薄的变化趋势,最大实 钻厚度为 502 m,平面分布范围为 2610 km²[图 5(b)]。 芦二段烃源岩的热演化程度达到了低成熟一成熟演化 阶段,凹陷南部的热演化程度高于北部。汉水泉凹陷 仅局部发育芦二段,面积为 240 km²,岩性为灰色细砂岩、 泥质粉砂岩与灰黑色泥岩互层,其中,泥岩厚度为 84 m, 其 TOC 含量平均为 5.56%(据 14 件样品统计),有机 质类型为 III 型,镜质体反射率(R_o)为 0.62%(据 8 件样 品统计),处于低成熟演化阶段。由于汉水泉凹陷的芦 二段烃源岩分布局限,热演化程度较低,有机质类型明 显差于条湖凹陷和马朗凹陷,在紧邻源岩的细砂岩岩 心中未见油气充注,由此认为其不具备大规模生烃条 件。淖毛湖凹陷和苏鲁克凹陷缺失二叠系,芦草沟组 烃源岩不发育[图 5(b)]。

2.2.3 三叠系烃源岩

三塘湖盆地中一上三叠统小泉沟群发育一套煤 系烃源岩,岩性为深灰色泥岩、灰黑色碳质泥岩和 黑色煤。平面上,小泉沟群煤系烃源岩主要分布在 汉水泉凹陷和条湖凹陷[图 5(c)],烃源岩的最大厚度 为125m,分布面积为2400km²。烃源岩的TOC含量为 0.11%~66.2%(据84件样品统计)、平均为6.4%, $S_1 + S_2$ 为 0.03~308.40 mg/g、平均为 24.2 mg/g,主 体为一套一般一好的烃源岩;有机质来源主要为陆源 高等植物,有机质类型为Ⅱ一Ⅲ型;镜质体反射率 R。 为 0.50%~0.75%,整体处于低成熟演化阶段,仅局 部达到早期成熟演化阶段。条湖凹陷中部的小泉沟 群煤系烃源岩具备一定规模,面积约为280km²。在 围绕这一生烃灶进行的长期勘探中,仅发现北小湖 油田侏罗系砂岩油藏,其含油面积小、油气充注不 足、油藏含水,反映烃源岩的生/排烃有限,资源潜力 不足。

2.3 主要储层特征

2.3.1 石炭系火山岩内幕型储层

中国的陆上火山岩发育风化壳地层型和内幕岩性型2类储层^[27]。三塘湖盆地上石炭统卡拉岗组位于大型不整合面之下,火山岩经历了长时间的风化淋滤作用,形成了好的风化壳储层^[8]。哈尔加乌组位于卡拉岗组之下,发育厚层火山岩但缺乏风化壳储层的发育条件。在与哈尔加乌组烃源岩相邻或其上部火山岩中可见到丰富的油气显示,表明哈尔加乌组发育火山岩内幕型储层。储层岩性以气孔杏仁玄武岩为主,其储集空间为构造-溶蚀缝、杏仁收缩缝、杏仁溶蚀孔和

基质微孔(图 6)。哈尔加乌组发育 1 个火山喷发旋 回、2 个火山喷发亚旋回^[28]。每个亚旋回由下部块状 致密玄武岩和上部气孔杏仁玄武岩组成,气孔杏仁玄 武岩较块状致密玄武岩更容易经受溶蚀作用,形成有 效储层^[29]。哈尔加乌组气孔杏仁玄武岩储层在纵向 上与烃源岩呈互层叠置或通过断层沟通,具备近源成 藏的条件。在牛东构造带,M67 井在 3 286~3 300 m 井段的哈尔加乌组玄武岩段开展了常规射孔试油,其 自喷产油量为 65.6 m³/d、产气量为 2 000 m³/d,累计 产油量为 1.9 余万吨、天然气产量为 42×10⁴m³,表明 火山岩内幕型储层可作为油气勘探的重要对象。

2.3.2 芦草沟组页岩油储层

三塘湖盆地的芦二段具有源-储一体、整体含油的 特点,在纵向上因局部富集而形成页岩油"甜点"。评价 落实"甜点"、找准主力油层是三塘湖盆地页岩油勘探开 发的关键^[19]。由于芦二段发育复杂的混积岩,包括凝 灰岩类和白云岩类 2 种过渡岩类、共 7 种岩性,导致对 页岩油"甜点"的岩性存在不同认识:①"甜点"岩性为白 云岩类^[17];②"甜点"岩性为中酸性晶屑凝灰岩^[14];③不 同岩性均能形成储层"甜点",其中,凝灰岩最优,其次 为白云岩、凝灰质白云岩,最差为白云质凝灰岩^[15]。

为进一步深化芦二段页岩油"甜点"岩性的认识, 笔者针对7口钻井共9个核磁共振测井的高孔隙度解 释页岩油"甜点"层/段采集了41件岩心样品,开展了 全岩X射线衍射分析(表1)。核磁共振测井揭示,芦二 段页岩油"甜点"的单层厚度变化大,为2.1~22.5m,平 均总孔隙度为 7.1% ~ 12.6%,平均有效孔隙度为 5.5% ~ 12.0%。芦二段页岩油"甜点"的矿物成分以 白云石为主(51.8% ~ 75.0%),其次为石英和长 石(24.0% ~ 40.0%),黏土矿物含量低(0~5.8%),岩 性主要为凝灰质白云岩。岩心铸体薄片观察表明,芦 二段页岩油"甜点"发育白云石粒内溶蚀孔、溶蚀孔洞 和构造溶蚀缝等储集空间,且白云石结晶程度越高、孔 隙发育越好(图7)。因此,白云岩类是芦二段页岩油 重要的储集层。结合常规组合测井和核磁共振测井资 料,可以较好地识别芦二段页岩油"甜点"(图7),为后 续"甜点"预测提供基础。芦二段页岩油"甜点"具有高 核磁有效孔隙度(≥6.0%);根据测井资料分析,"甜 点"在深侧向电阻率一补偿密度和声波时差一补充密 度交会图中呈现出明显的包络面特征,表现为低声波 时差、低补偿密度和中一高电阻率。

表 1 三塘湖盆地芦二段页岩油甜点核磁共振测井及全岩 X 射线衍射分析数据

Table 1 Nuclear magnetic resonance logging and whole rock X-ray diffraction analysis data of shale oil

weet spots in Member 2 of Lucaogou Formation, Santangnu I	Basin
---	-------

		核磁共振测井				岩心全岩 X 射线衍射分析				
井名	岩性	高孔隙度	储层厚度/	平均总孔 隙度/%	平均有效 孔隙度/m	样品数	矿物平均含量/%			
		异常井段/m	m				黏土矿物	白云石	石英+长石	其他
T34	凝灰质白云岩	3 283. 4~3 301. 6	18.2	9.7	9.3	3	0	64.7	35.3	0
T3403	凝灰质白云岩	3 343. 5~3 362. 8	19.3	7.8	7.4	15	0.8	51.8	36.6	10.3
M6103	凝灰质白云岩	2 949. 0∼2 960. 3	9.7	8.2	7.3	2	0	67.5	31.5	1.0
M708	凝灰质白云岩	2176.6~2179.4	16.2	8.2	8.1	3	1.0	55.0	34.6	9.4
LU1	凝灰质白云岩	3 056. 5~3 064. 5	8.0	7.9	6.8	3	0	57.3	40.0	2.7
LU1	凝灰质白云岩	3 122. 0~3 125. 0	3.0	7.3	6.0	2	0	58.0	30.5	11.5
LU1	凝灰质白云岩	3 162. 8~3 164. 9	2.1	7.1	6.3	1	0	75.0	24.0	1.0
M62	凝灰质白云岩	2879.3~2903.3	18.0	12.6	12.0	7	1.9	57.0	38.6	2.5
M804	凝灰质白云岩	1915. 3~1937. 8	22.5	9.9	8.7	5	5.8	53.6	35.4	5.2

图 7 T34 井页岩油"甜点"测井评价及储集空间类型

2.3.3 芦草沟组碎屑岩储层

三塘湖盆地在芦草沟组沉积期被认为是一个欠补 偿型盆地^[22,30],主要发育以内碎屑和火山灰为主的混 合细粒沉积,缺乏陆源粗碎屑物质的规模输入^[15]。受 准噶尔盆地东部中二叠统砂岩油藏勘探突破的启 示^[31],笔者系统梳理了三塘湖盆地芦草沟组的录井、 测井和岩心资料,在盆地边缘的 M6 井、Y1 井、M11 井等多口钻井中发现了规模的陆源碎屑沉积(图 8、 图 9),表明芦草沟组沉积期存在一定的陆源输入。芦 草沟组在纵向上 3 个层段均发育陆源碎屑沉积。以 M6 井为例,其芦二段厚度为 545 m(未钻穿),主要岩 性为砂砾岩、细砂岩、粉砂岩及部分砾岩、灰岩和灰质 泥岩;岩心观察砾岩的砾石成分较为单一,主要为火山 岩碎屑,砾径为 1~4 cm,分选差,磨圆度呈次棱角状, 为盆地南缘断控陡坡扇沉积。M6 井的芦二段发育砂 岩优质储层,储集空间类型为粒内溶蚀孔、粒间孔和粒 内缝(图 9),对 3 056~3 142 m 井段和 3 265~3 298 m 井段进行射孔后自喷,分别获得产油量为 15.2 t/d 和 22.2 t/d,实现了盆地南缘芦草沟组粗碎屑油藏的勘探 突破。截至 2022 年底,M6 井的累计产油量为 15 650 t, 表明芦草沟组盆缘常规砂岩储层具备勘探价值。

2.4 煤基油气地质特征

2.4.1 煤层气实验分析及结果

三塘湖盆地中一下侏罗统八道湾组和西山窑组煤 炭资源丰富,其中,在汉水泉凹陷、条湖凹陷和马朗凹 陷的叠合总面积为4216 km²,煤层厚度为5~61 m,具 备煤层气成藏的物质基础。笔者对马朗凹陷 Tang1 井和条湖凹陷 T15 井的西山窑组分别采集了 23 件和 15 件煤心样品,采样深度分别为 993.05~1035.25 m 和 843.72~851.93 m,开展了煤层气含量测试、煤质

图 8 三塘湖盆地南部芦草沟组陆源碎屑沉积

Fig. 9 Reservoir characteristics of clastic rocks of Lucaogou Formation in Santanghu Basin

分析、煤岩测试等实验,并评价煤层气成藏条件。

研究区的宏观煤岩类型主要为暗淡煤和半暗煤, 煤岩成分以暗煤为主,夹少量线理状一条带状镜煤及 少量薄层状丝炭。煤岩的煤体结构以原生结构煤为 主,显微组分为低含量壳质组、中等含量镜质组(腐殖 组)和较高含量惰质组,具有含中一低水分、低灰分、高 挥发分等特征(表 2)。煤心的平均孔隙度为 9.77%, 渗透率为 0.31~1.33 mD;*R*。为 0.39%~0.53%、平 均 0.45%,为低阶煤,相当于褐煤煤化阶段。煤岩的含 气量为 3.09~6.14 m³/t,平均为 4.01 m³/t(表 3);甲烷 浓度为 73.72%~86.55%,平均 79.74%;二氧化碳含 量为 0.52%~1.36%,平均为 0.98%;氮气含量为 12.52%~24.97%,平均为 19.28%。煤层中气体样 品的甲烷碳同位素(δ^{13} C)为 - 55.30‰~ - 52.63‰, 氢同位素(δ D)为 - 267‰~ - 238‰;煤层气属于以 生物成因气为主、热成因气为辅的混合成因气类型。 深部煤岩的 R_{\circ} 达到 0.8%,具备煤热成因气生成 条件^[32]。

2024年 第45卷

表 2 Tang1 井和 T15 井侏罗系煤岩样品工业分析与显微组分测试结果

Table 2 Industrial analyses and maceral measurements of Jurassic coal samples from Well Tang1 and Well T15

世友		工业组分/%			显微组分/%				
开名	埋休/Ⅲ	水分	灰分	挥发分	镜质组(腐殖组)	惰质组	壳质组	无机矿物	
T	993.05~	1.14~3.57/	2.18~20.70/	24.39~40.83/	11.80~66.30/	26.60~81.80/	0~0.50/	5.30~6.90/	
Tangi	993.40	2.94(23)	6.33(23)	6.33(23)	34.16(5)	59.48(5)	0.10(5)	6.26(5)	
T15	843.72 \sim	7.74 \sim 8.89/	2.94 \sim 9.82/	26.93 \sim 40.77/	24 . 50~67. 90/	30.50~68.70/	0.40~2.50/	$0\sim$ 5.90/	
115	851.93	8.46(15)	5.38(15)	31.96(15)	4.10(15)	53.10(15)	1.00(15)	1.87(15)	
T15	993. 40 843. 72~ 851. 93	2.94(23) 7.74~8.89/ 8.46(15)	6.33(23) 2.94~9.82/ 5.38(15)	6.33(23) 26.93~40.77/ 31.96(15)	34. 16(5) 24. 50~67. 90/ 4. 10(15)	59. 48(5) 30. 50~68. 70/ 53. 10(15)	0. 10(5) 0. 40~2. 50/ 1. 00(15)	6. 2 0^ 1. 8	

注:"/"后为平均值;括号内为样品数。

表 3 Tang1 井和 T15 井侏罗系煤岩样品储层参数 Table 3 Reservoir parameters of Jurassic coal samples from Well Tang1 and Well T15

Tang1 993. 05~993. 40 7. 17~11. 60/9. 44(5) 0. 31~18. 90/6. 88(5) 0. 42~0. 54/0	0. 48(7) 3. 46~6. 14/4. 17(23)
T15 843. 72 \sim 851. 93 8. 07 \sim 11. 59/9. 89(15) 0. 39 \sim 0. 46/0	$3.09 \sim 3.75/3.41(6)$

注:"/"后为平均值;括号内为样品数。

2.4.2 富油煤实验分析及结果

富油煤具有油气资源属性,可纳入非常规油气资 源,主要赋存于中一低阶煤类中^[33]。三塘湖盆地侏罗 系的低阶煤资源丰富,煤层落实程度高,单层及累计厚 度大,具备开展富油煤研究与试验的基础条件。

三塘湖盆地周缘各煤田矿区已广泛开展侏罗系煤 层焦油产率测试,分析结果表明,八道湾组和西山窑组 发育富油—高油煤层^[34]。其中,八道湾组煤岩的焦油 产率为7.20%~22.20%,平均为14.55%(据70件样 品统计),样品均达到富油煤评级标准(焦油产率> 7.00%)。西山窑组煤岩的焦油产率为4.40%~
22.80%,平均为14.60%(据70件样品统计),仅部分样品达到富油煤评价标准。

在三塘湖盆地内,侏罗系煤层的埋深跨度大,主体 超过 500 m,最大埋深可达 2 500 m。笔者采集了汉水 泉凹陷 HD1 井八道湾组煤岩岩屑样品和条湖凹陷 Tang2 井八道湾组煤岩岩心样品,开展了低温干馏实 验。分析结果表明,三塘湖盆地凹陷区八道湾组煤岩 的焦油产率为 8.40%~16.40%,达到了富油—高油 煤评价标准(表 4)。

表 4 Tang2 井和 HD1 井侏罗系煤岩样品低温干馏实验结果 Table 4 Experimental results of low temperature retorting of Jurassic coal samples from Well Tang2 and Well HD1

井名	地层	深度/m	焦油产率/%	半焦产率/%	总水分产率/%	煤气+损失/%	评价结果
		1 081. 16	16. 1	56.3	13.0	14.6	高油煤
Tang?	小冶迹细	1 083. 64	15.6	58.0	13.5	12.9	高油煤
1 ang2	八旦侍坦	1 085. 58	15.5	57.4	13. 5	13.6	高油煤
		1 087. 59	14.5	59.7	13.0	12.8	高油煤
HD1 /		1 938. 00	15.0	69.0	5.8	10.2	高油煤
	八道湾组	1 940. 00	14.2	70.3	6.4	9.1	高油煤
		1 942. 00	14.0	71.6	6.1	8.3	高油煤
		1 944. 00	16.4	68.9	6.0	8.7	高油煤
		1 946. 00	8.4	79.8	6.6	5.2	富油煤

3 勘探开发新领域、新类型及其资源潜力

随着油气勘探开发程度不断提高和难度加大,复 杂构造、复杂岩性、深层和非常规逐渐成为盆地的主要 勘探开发目标,是战略接替和目标准备的重要领 域^[35]。立足近期在构造、烃源岩和储层等研究上的进 展和认识,基本明确了三塘湖盆地的油气勘探开发重 点仍为条湖凹陷和马朗凹陷,下一阶段将立足南部山 前冲断掩伏带的大构造、洼陷区页岩油、源边粗碎屑油 藏和石炭系火山岩内幕型油藏 4 个勘探新领域,以及 煤层气、富油煤 2 种新资源类型,实现油气勘探开发的 战略接替和目标准备。

3.1 4个油气勘探开发新领域及其资源潜力

3.1.1 南部冲断带大型构造

三塘湖盆地南部冲断带具备前陆盆地特有的油 气地质特征,即在早期拉张构造背景下沉积了有效 的烃源岩层系,在晚期挤压背景下发育前陆逆冲 带,从而形成成排成带的大型构造圈闭,其成藏组 合好,具备勘探潜力^[36]。条湖凹陷和马朗凹陷南 部冲断带的勘探面积为1685 km²,在白依山断裂下 盘发育单排或双排正向构造,基本落实背斜或断背 斜圈闭 17个,圈闭总面积为 263 km²(图 10),估算 圈闭资源量为 1.24×10⁸t,已提交三级石油地质储 量 3751×10⁴t。

图 10 条湖凹陷和马朗凹陷芦草沟组顶界构造

(1)南部冲断带紧邻生烃凹陷。受早期拉张正断 层控制,南部冲断带石炭系、二叠系的沉积厚度大,发 育断陷期生烃洼槽,烃源岩分布范围广、厚度大且品质 好,油源条件优越;烃源岩的热演化程度整体较凹陷区 高,R。达 0.71%~1.10%,主要生成中质油和轻质 油,原油密度为 0.847 3~0.881 1 g/cm³,原油黏度为 9~47 mPa•s。

(2)南部冲断带已发现条湖组和卡拉岗组火山岩 油藏、芦草沟组页岩油藏和粗碎屑油藏(图 11),油藏 类型丰富且均证实具备高产和稳产条件。例如,T17 井的条湖组在直井开采初期产油量为 10.38 t/d、累计 已产油量为 1.36×10⁴t,T34 块芦草沟组页岩油水平 井单井的累积产量为(0.70~2.07)×10⁴t。

(3)南部冲断带围绕石炭系和二叠系2套烃源岩 发育多种成藏组合,包括自生自储、下生上储,以及由 侧向对接形成的芦草沟组生油、卡拉岗组储集的成藏 模式。

(4) 南部冲断带发育正常或偏高的地层压力系 统。T17 并条湖组的压力系数为 0.915,T34 井、M9 井、M6 井和 M11 井芦草沟组的压力系数为 0.990~ 1.235,T5 井卡拉岗组的压力系数为 0.990,均有利于 油气生产。

3.1.2 洼陷区页岩油

2018-2022年,油公司在条湖凹陷和马朗凹陷正 向构造带,包括石板墩构造带 T34 块和牛圈湖构造带 M1块,开展了芦草沟组页岩油开发技术先导试验,基本 形成"甜点"井-震识别、水平井钻探和储层改造系列技术, 水平井的建产效果较好。T34块的油藏埋深为3280~ 3430m,钻探水平井3口,累计产油量为3.85×10⁴t; M1 块的油藏埋深为 2 220~3 350 m,钻探水平井 20 口,累计产油量为 16.00×10⁴t。通过开展芦草沟组页岩 油"甜点"并-震识别,基本落实发育面积1390 km²(图 12), 地质资源量 3.00×10⁸t,资源潜力大。其中,提交页岩 油三级石油地质储量 0.55×10⁸t。马朗凹陷洼陷区页 岩油"甜点段"与 M1 块的对应关系好,平面分布稳定, 累积厚度最大可达 60 余米,是下一阶段探索开发动用 的关键。芦草沟组页岩油的原油密度整体具有 NE 向 高、SW 向低的特征,原油密度对页岩油的开发动用有 明显影响,其中,M9井及其以西地区是芦草沟组页岩 油开发动用的最有利区带。

3.1.3 芦草沟组近源粗碎屑油藏

岩性组合以细粒砂岩与泥页岩、或细粒砂岩与化 学沉积过渡性岩类为主的烃源岩层,可在富砂质层段 形成含油饱和度高的油藏^[35]。芦草沟组沉积期,三塘 湖盆地的原型为断陷湖盆,控盆断层位于盆地南部,南 部为沉积中心,地层整体南厚北薄。自下到上,芦草 沟组经历了一个完整的断陷湖盆构造升降旋回,其 中,芦一段沉积期为早期断陷作用阶段,芦二段沉积 期为中期强烈断陷作用阶段,芦三段沉积期为晚期 断陷萎缩阶段。钻井揭示,盆地边缘的芦草沟组发 育陆源碎屑沉积体系。盆地南缘主要发育断控陡坡 扇沉积,其中,在马朗凹陷南缘,基于井-震结合分析, 沉积砂体相对落实,面积约为 360 km²(图 13),是油 气勘探的重点对象,预估资源量为 6900×10⁴t;盆地 北缘斜坡区局部有陆源砂体输入,但规模较小,勘探 价值有限。

图 12 条湖凹陷和马朗凹陷芦二段页岩油"甜点"厚度分布 Fig.12 Thickness distribution of shale oil sweet spots in Member 2 of Lucaogou Formation in Tiaohu-Malang sags

图 13 条湖凹陷和马朗凹陷芦草沟组沉积相 Fig.13 Sedimentary facies of Lucaogou Formation in Tiaohu-Malang sags

3.1.4 石炭系火山岩内幕型油藏

三塘湖盆地条湖凹陷和马朗凹陷哈尔加乌组烃源 岩的分布面积为3100 km²,资源量为3.53×10⁸t。以 哈尔加乌组为油源,已探明牛东油田卡拉岗组火山岩 风化壳油藏的整装储量为6519×10⁴t以及 M67 块哈 尔加乌组火山岩内幕型油藏(图 14)储量为 213× $10^4 t$,剩余资源量为 2.85×10⁸t。受油源断裂影响, 哈尔加乌组烃源岩生成的油气主要在哈尔加乌组内 部及卡拉岗组成藏^[9]。由于盆地北部卡拉岗组火山 岩风化壳油藏的勘探程度高,石炭系的勘探重点转 变为哈尔加乌组火山岩内幕型油藏。条湖凹陷和马 朗凹陷钻遇哈尔加乌组的预探井有 42 口,试油井有 12口,其中,5口井(T16井、M67井、M36井、M71 井和 M73 井)已获得工业突破(图 15)。成藏的关键 在于紧邻厚层烃源岩并且发育溢流相气孔杏仁玄武 岩储层。将哈尔加乌组烃源岩和玄武岩储层发育区 进行叠合分析,基本落实了火山岩内幕型油藏的有 利勘探区,主要集中在马朗凹陷,面积为 320 km²,预 估资源量为 9600×10⁴t。

Fig. 15 Evaluation of the prospective area for Haerjiawu volcanic reservoir in Tiaohu and Malang Sag

3.2 两种新资源类型及其资源潜力

3.2.1 煤层气

三塘湖盆地西山窑组煤层主要分布在汉水泉凹陷 东部、条湖凹陷和马朗凹陷西北部[图 16(a)],总面积 为2595 km²,以分布多层薄煤、多层厚煤和单层巨厚煤 为特征,单层煤岩的厚度为 3~48 m,累积厚度为 5~ 61m。西山窑组的煤层气资源相对富集,含气量为 1.71~10.00 m³/t^[32],平均资源丰度为 1.12×10⁸ m³/km², 煤层气的资源总量估算为 2700×10⁸ m^{3[37]}。为进一 步落实有利勘探区,油公司构建了三塘湖盆地低煤阶煤 层气 I 类区评价标准,即主煤层的埋深在 800~1500 m、 厚度≥20 m、含气量≥4.00 m³/t。评价结果表明,西 山窑组煤层气 I 类区分布在马朗凹陷马北斜坡和条湖 凹陷条东—西峡沟地区,总面积为 884 km²,预测资源 量为 1 427×10⁸ m³,资源 丰度为(1.62~2.43)× 10⁸ m³/km²(表 5)。三塘湖盆地八道湾组的煤层气资 源评价仍有待进一步研究。

表 5 三塘湖盆地西山窑组煤层气资源评价 Table 5 Resource evaluation of coalbed methane in

Xishanyao Formation of Santanhu Basin

凹陷	I 类区面积/ km ²	平均厚度/ m	煤岩密度/ (g/cm ³)	含气量/ (m ³ /t)	资源量/ 10 ⁸ m ³	资源丰度/ (10 ⁸ m ³ /km ²)
条湖	813	30	1.35	4.0	1 254	2.43
马朗	71	40	1.35	4.5	173	1.62

三塘湖盆地的煤层气钻探及排采始于 2018 年,在马朗凹陷马北区块部署实施了 T1 梅花井组, 先后钻探了 7 口煤层气井,揭示煤层厚度为 43.0~ 47.5 m,气测全烃含量最高在 6.9%~23.3%,展 现出较好的含气性。煤层气排采采用六段双压排 采控制方法,遵循连续、缓慢、稳定和长期的原则。 在排采的过程中,累计排采 124~395 d 见套压产气, 临界解吸压力为 2.7~5.8 MPa,临储比为 0.30~ 0.54,7 口井均见气。排采 500 d 后,产气量进入快 速上升阶段,单井产气最高达到 2 298 m³/d,井组 最高产气量为 6 000 m³/d,累积产气量为 154× 10⁴ m³,展现出三塘湖盆地具有低煤阶煤层气的勘 探潜力。

3.2.2 富油煤

三塘湖盆地侏罗系八道湾组和西山窑组2套煤层 的焦油产率为 4.40%~22.80%,其中,八道湾组煤层 的焦油产率整体高于西山窑组。八道湾组煤层的焦 油产率普遍达到富油煤标准,西山窑组煤层仅部分 达到了富油煤标准[34]。西山窑组富油煤层的分布规 律有待进一步研究。两套煤层的自然伽马和孔隙度测 井响应特征一致,但八道湾组煤层的电阻率(1000~ 170000Ω·m)显著高于西山窑组(80~600Ω·m),这 可能与煤层的含油率存在一定的相关性。三塘湖盆 地八道湾组煤层主要分布在汉水泉凹陷和条湖凹 陷[图 16(b)], 总面积为 2 275 km², 其中, 在汉水泉 凹陷内的分布面积为1371km²、平均煤层厚度为 9m,在条湖凹陷内的分布面积为904km²、平均煤层 厚度为19m。三塘湖盆地汉水泉凹陷和条湖凹陷八 道湾组的计算焦油资源量为 60.20×10⁸t,其中,在汉 水泉凹陷内为 24.50×10⁸t,在条湖凹陷内为 35.70× $10^{8}t(表 6)$ 。

表 6 三塘湖盆地八道湾组富油煤资源评价

Table 6 Resource evaluation of tar-rich coal in Badaowan

Formation of Santanhu Basin

凹陷	含煤面积/ km ²	平均厚度/ m	煤岩密度/ (g/cm ³)	煤炭资源 量/10 ⁸ t	平均焦油 产率/%	焦油资源 量/10 ⁸ t
汉水泉	1 371	9	1.35	166	14.70	24.5
条湖	904	19	1.35	231	15.40	35.7

4 勘探开发思路和部署安排

三塘湖盆地油气勘探开发在下洼、深层、复杂构造 区和煤基油气等领域面临着难题,需要整体推进勘探 地质研究和开发工艺实验。基于优选的6大勘探开发 新领域和新类型,根据认识程度、地质研究进展和开发 条件,从战略展开、战略突破和战略准备3个层次确定 勘探开发部署安排。

4.1 战略展开

战略展开层次主要指该领域已在某一区域获得勘 探发现和效益开发,需要将成功的模式应用到具有类 似油气地质条件的有利区带。战略展开领域主要包括 南部冲断带大型构造、洼陷区页岩油、石炭系火山岩内 幕型油藏。

由于紧邻二叠系生烃中心,油源条件好,三塘湖盆 地南部冲断带成排成带的大型构造是当前油气勘探的 重点,也是难点,核心问题是构造变形复杂、地震成像 困难,因而构造圈闭的准确落实难度大。为进一步刻 画落实三塘湖盆地南部冲断带的构造形态,油公司计划 在条湖凹陷和马朗凹陷南部部署实施面积达 775 km² 的"两宽一高"三维地震,其中,2022—2023 年已先期在黑 墩西地区实施并完成采集三维地震面积 180 km²。通过 优化采集参数,采用拓展低频激发、增加接收道数、减 小道距、增大非纵距、增大观测方位、提高覆盖次数等 一系列方式,提高成像品质;2024—2025 年,计划依托 黑墩西地区三维地震成果,以实现规模发现为目的,在 南部冲断带前缘第一排构造进行预探。

在三塘湖盆地正向构造带,T34 块和 M1 块页岩油 开发技术先导试验区,页岩油的 R。分别为 0.85%~ 0.91%和 0.94%,地层压力系数分别为 1.01 和 1.22~ 1.27,原油密度为 0.855 9~0.857 0 g/cm³,达到了陆 相页岩油攻关目标层次二的标准^[38]。两区块通过水 平井大型体积压裂提高驱动能量,发展储层增能技 术,有效提高了开发效率。三塘湖盆地页岩油勘探 开发下一阶段的重点区为马朗凹陷 M9 区块,其页岩 油的 R。≥0.90%,地层压力系数为 1.14~1.24,原油 密度≪0.8600 g/cm³。后续将以直井控制规模、水平 井提产的方式稳步推进勘探开发进程,力争在"十五 五"(2026—2030 年)规划期间实现洼陷区规模效益 建产。

有效烃源岩与穿插其中的火山岩在平面上的叠覆 和剖面上的交互为火山岩油气藏的形成提供了充沛的 油气源供给条件^[39]。三塘湖盆地石炭系哈尔加乌组 火山岩和烃源岩具有叠覆和交互关系,具备近源成藏 条件。在条湖凹陷和马朗凹陷北部,近源成藏的哈尔 加乌组火山岩内幕型油藏已获得勘探发现,下一阶段 将围绕已发现区块持续开展扩展勘探和油藏评价工 作,落实储量规模。在马朗凹陷南部,石炭系的勘探程 度低,预测发育多个生烃中心,烃源岩的成熟度高(R。> 1.0%),是下一步甩开预探、实现火山岩油气藏规模发 现的重要领域。由于火山岩油藏的储层物性受埋深影 响小^[27],因此,尽管凹陷区哈尔加乌组目的层的埋深 大于 3500 m,但并不限制发育自生自储式大型火山岩 油藏。

4.2 战略突破

战略突破主要是指该领域已有井揭示重要苗头, 地质评价的成藏条件好,具备勘探突破和规模开发潜力,需要勘探发现和开发工艺进步带动整个领域突破。 战略突破领域主要包括芦草沟组近源粗碎屑油藏和煤 层气。

近源粗碎屑油藏是在烃源岩层的富砂质段中形成 的具有高含油饱和度的油藏,具备好的开发动用效 果^[40]。三塘湖盆地芦草沟组主要发育细粒混积岩沉 积,但在盆地边缘则发育规模陆源碎屑沉积。在马朗 凹陷南缘,芦草沟组陆源沉积砂体的落实程度相对较 高,砂体分布具有一定规模,是当前勘探的重点区。后 续将围绕 M6 块实施扩展勘探和滚动评价,进一步研 究油藏地质特征,落实储量规模和开发条件。同时甩 开预探,力争实现新的勘探发现。

三塘湖盆地的煤层气勘探开发将以马朗凹陷马北 斜坡带的西山窑组煤层为重点,通过建立先导试验区, 持续攻关中一浅层低煤阶煤层气效益动用技术。 2024—2025年,计划利用直井顶板射孔+低密度支撑 剂压裂、水平井+大规模体积压裂等工艺进一步提高 单井产量,力争实现整体效益突破。马北斜坡带先导 试验区的煤层气储量规模为 173×10⁸ m³,工艺突破 后,可建成煤层气产量(2~3)×10⁸ m³/a。待马北斜 坡区实现稳产后,再大规模开展条湖凹陷煤层气井网 部署和开发动用,逐步实现三塘湖盆地千亿立方米的 煤层气资源效益勘探开发。

4.3 战略准备

战略准备是指该领域宏观判断的油气地质条件较好,但由于资料情况、认识程度和勘探程度较低,尚未获得实质性进展,需要开展前期研究准备,例如富油煤领域。

富油煤是一种具有油气资源属性的特殊煤炭资 源^[41],富油煤所蕴含的煤基油气资源对富煤盆地油气 勘探开发接替具有重要战略意义。三塘湖盆地八道湾 组煤层的分布特征通过大量钻井和地震资料已准确落 实,在汉水泉凹陷和条湖凹陷的分布面积为 2 275 km²,

厚度为4~50m。基于各煤田矿区和盆地内的钻井资 料,基本落实八道湾组煤层普遍达到了富油煤标准,焦 油资源量为60.20×10⁸t。煤炭原位干馏是实现富油 煤资源有效动用的关键技术。三塘湖盆地富油煤的原 位加热干馏将首先以条湖凹陷北缘侏罗系八道湾组高 油煤为目标层系,优选煤层厚度适中、构造稳定、顶底 板条件良好、地面配套工程便利的干馏有利区开展试 验。通过建立钻井式 U 型干馏炉,在地下煤层建立热 量导入和产品产出通道,使煤在原位发生干馏反应(热 解),生产液态(焦油、水)和气态(以 CH4 和 H2 为主) 碳氢化合物,同时将煤中的碳元素以半焦形式留在地 下,通过取氢留碳(半焦、CO₂)实现煤炭资源清洁转 化。热解反应具有无机硫释放量低、产物中 H₂S 排放 量小等特点,且热解反应产生的污染物能被吸附能力 极强的半焦捕获,难以进入地下水,降低了地下水污染 的风险。按照实验及地下干馏炉环境开展的模拟结果 表明,单炉的产煤气量可达到4500~12000m3/d,其中, CH4 和 H2 的占比可达 85%以上。预计"十四五"(2021— 2025年)规划末期在三塘湖盆地开展现场试验,试验 成功后在"十五五"期间可建成相当规模油气当量的地 下富油煤原位于馏示范基地。

5 结 论

(1) 三塘湖盆地经历了晚古生代晚期 2 期伸展构造作用和中生代—新生代 3 期挤压构造作用,纵向上 形成了 5 个构造层,其中,上石炭统和中二叠统为伸展构造层,中一上三叠统至侏罗系、白垩系和新生界为前 陆褶皱冲断构造层。

(2) 三塘湖盆地发育3套有效烃源岩。三叠系煤 系烃源岩的品质为一般一好,有机质类型差,热演化程 度较低,有效分布范围和规模有限;芦草沟组和哈尔加 乌组烃源岩的品质为好一优质,有机质类型好,热演化 程度较高,有效分布范围和规模大,主要分布在条湖凹 陷和马朗凹陷。

(3) 三塘湖盆地在中生代一新生代挤压构造的作 用下形成了南、北双向逆冲构造体系,其中,条湖凹陷 和马朗凹陷南部冲断带下盘构造宽缓,发育多排逆冲 叠瓦构造和冲起构造,源-储配置关系好,具备好的勘 探前景。

(4)三塘湖盆地中一深层发育多种类型的有利储 层,其中,石炭系哈尔加乌组发育火山岩内幕型储层, 二叠系芦草沟组发育页岩油和常规砂岩储层。

(5)三塘湖盆地侏罗系煤基油气资源丰富,其中, 西山窑组煤层气成藏条件好,马北斜坡区煤层气排采 已见到效果;八道湾组煤层的焦油产率普遍达到了富 油一高油煤评价标准。

(6) 三塘湖盆地下一阶段油气勘探开发的重点为 南部山前冲断掩伏带大构造、洼陷区页岩油、源边粗碎 屑油藏和石炭系火山岩内幕型油藏4个新领域以及西 山窑组煤层气、八道湾组富油煤2个新类型。

参考文献

- [1] 侯启军,何海清,李建忠,等.中国石油天然气股份有限公司近期 油气勘探进展及前景展望[J].中国石油勘探,2018,23(1):1-13.
 HOU Qijun, HE Haiqing, LI Jianzhong, et al. Recent progress and prospect of oil and gas exploration by PetroChina Company Limited[J]. China Petroleum Exploration,2018,23(1):1-13.
- [2] 周鼎武,柳益群,邢秀娟,等.新疆吐-哈、三塘湖盆地二叠纪玄武 岩形成古构造环境恢复及区域构造背景示踪[J].中国科学 D 辑:地球科学,2006,36(2):143-153.

ZHOU Dingwu, LIU Yiqun, XING Xiujuan, et al. Formation of the Permian basalts and implications of geochemical tracing for paleo-tectonic setting and regional tectonic background in the Turpan-Hami and Santanghu basins, Xinjiang[J]. Science in China Series D:Earth Science, 2006, 49(6):584-596.

- [3] LI Wei,LIU Yiqun,DONG Yunpeng, et al. The geochemical characteristics,geochronology and tectonic significance of the Carboniferous volcanic rocks of the Santanghu area in northeastern Xinjiang, China[J]. Science China Earth Sciences,2013,56(8);1318-1333.
- [4] 陈石,张元元,郭召杰. 新疆三塘湖盆地后碰撞火山岩的锆石 SHRIMPU-Pb 定年及其地质意义[J]. 岩石学报,2009,25(3): 527-538.

CHEN Shi, ZHANG Yuanyuan, GUO Zhaojie. Zircon SHRIMP U-Pb dating and its implications of post-collisional volcanic rocks in Santanghu Basin, Xingjiang[J]. Acta Petrologica Sinica, 2009, 25(3):527-538.

- [5] 梁世君. 吐哈探区油气勘探成果及潜力[J]. 新疆石油地质, 2020,41(6):631-641.
 LIANG Shijun. Achievements and potential of petroleum exploration in tuha oil and gas province[J]. Xinjiang Petroleum Geology,2020,41(6):631-641.
- [6] 郑民,李建忠,吴晓智,等. 我国主要含油气盆地油气资源潜力及 未来重点勘探领域[J]. 地球科学,2019,44(3):833-847.
 ZHENG Min, LI Jianzhong, WU Xiaozhi, et al. Potential of oil and natural gas resources of main hydrocarbon-bearing basins and key exploration fields in China[J]. Earth Science,2019,44(3):833-847.
- [7] 张明民,陈红汉,郑建平,等.新疆东北部三塘湖盆地卡拉岗组火 山岩的形成时代:锆石 U-Pb 定年[J].矿物岩石地球化学通报, 2010,29(4):400-408.

ZHANG Mingmin, CHEN Honghan, ZHENG Jianping, et al. The age of Kalagang Formation in the Santanghu Basin, northeast Xinjiang: evidence from zircons U-Pb dating of volcanic rocks[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2010,29(4):400-408.

[8] 邹才能,侯连华,陶士振,等.新疆北部石炭系大型火山岩风化体结

构与地层油气成藏机制[J].中国科学:地球科学,2011,41(11): 1613-1626.

ZOU Caineng, HOU Lianhua, TAO Shizhen, et al. Hydrocarbon accumulation mechanism and structure of large-scale volcanic weathering crust of the Carboniferous in northern Xinjiang, China[J]. Science China Earth Sciences, 2011, 55(2); 221-235.

- [9] 马剑,黄志龙,李华明,等. 马朗凹陷断裂一烃源岩空间配置关系 与石油垂向运移特征[J]. 沉积学报,2012,30(6):1140-1148. MA Jian, HUANG Zhilong, LI Huaming, et al. Matching relationship between faults and source rock and vertical migration characteristics of the oil in the malang sag[J]. Acta Sedimentologica Sinica,2012,30(6):1140-1148.
- [10] 梁浩,李新宁,马强,等. 三塘湖盆地条湖组致密油地质特征及勘探潜力[J]. 石油勘探与开发,2014,41(5):563-572.
 LIANG Hao, LI Xinning, MA Qiang, et al. Geological features and exploration potential of Permian Tiaohu Formation tight oil, Santanghu Basin, NW China[J]. Petroleum Exploration and Development,2014,41(5):563-572.
- [11] MA Jian, HUANG Zhilong, LIANG Shijun, et al. Geochemical and tight reservoir characteristics of sedimentary organic-matterbearing tuff from the Permian Tiaohu Formation in the Santanghu Basin, Northwest China[J]. Marine and Petroleum Geology, 2016,73:405-418.
- [12] SI Xueqiang, WANG Xin, ZHI Fengqin. Microscopic characteristics of Tiaohu Formation sedimentary tuff tight oil reservoir from Malang sag, Santanghu Basin[J]. Acta Geologica Sinica, English Edition, 2015, 89(S1):75-76.
- [13] MA Jian, HUANG Zhilong, GAO Xiaoyu, et al. Oil-source rock correlation for tight oil in tuffaceous reservoirs in the Permian Tiaohu Formation, Santanghu Basin, northwest China[J]. Canadian Journal of Earth Sciences, 2015, 52(11):1014-1026.
- [14] 陈旋,刘俊田,龙飞,等. 三塘湖盆地二叠系凝灰岩致密油勘探开 发实践及认识[J]. 中国石油勘探,2019,24(6):771-780.
 CHEN Xuan,LIU Juntian,LONG Fei,et al. Practical experience and understanding of exploration and development of Permian tight tuff reservoir in the Santanghu Basin[J]. China Petroleum Exploration,2019,24(6):771-780.
- [15] 范谭广,徐雄飞,范亮,等. 三塘湖盆地二叠系芦草沟组页岩油地 质特征与勘探前景[J]. 中国石油勘探,2021,26(4):125-136. FAN Tanguang,XU Xiongfei,FAN Liang, et al. Geological characteristics and exploration prospect of shale oil in Permian Lucaogou Formation,Santanghu Basin[J]. China Petroleum Exploration,2021,26(4):125-136.
- [16] 赵泽辉,郭召杰,韩宝福,等.新疆三塘湖盆地古生代晚期火山岩地 球化学特征及其构造-岩浆演化意义[J]. 岩石学报,2006,22(1): 199-214.

ZHAO Zehui, GUO Zhaojie, HAN Baofu, et al. The geochemical characteristics and tectonic-magmatic implications of the latest-Paleozoic volcanic rocks from Santanghu Basin, eastern Xinjiang, northwest China[J]. Acta Petrologica Sinica, 2006, 22(1); 199-214. 球化学及其构造环境分析[J]. 岩石学报,2006,22(1):189-198. HAO Jianrong,ZHOU Dingwu,LIU Yiqun, et al. Geochemistry and tectonic settings of Permian volcanic rocks in Santanghu Basin,Xinjiang[J]. Acta Petrologica Sinica,2006,22(1):189-198.

- [18] LIU Bo, BECHTEL A, SACHSENHOFER R F, et al. Depositional environment of oil shale within the second member of Permian Lucaogou Formation in the Santanghu Basin, Northwest China[J]. International Journal of Coal Geology, 2017, 175:10-25.
- [19] 梁世君,罗劝生,王瑞,等.三塘湖盆地二叠系非常规石油地质特 征与勘探实践[J].中国石油勘探,2019,24(5):624-635. LIANG Shijun,LUO Quansheng,WANG Rui, et al. Geological characteristics and exploration practice of unconventional Permian oil resources in the Santanghu Basin[J]. China Petroleum Exploration,2019,24(5):624-635.
- [20] GREENE T J, CARROLL A R, WARTES M, et al. Integrated provenance analysis of a complex orogenic terrane: Mesozoic uplift of the Bogda Shan and inception of the Turpan-Hami Basin, NW China[J]. Journal of Sedimentary Research, 2005, 75 (2): 251-267.
- [21] 王书荣,宋到福,何登发. 三塘湖盆地火山灰对沉积有机质的富 集效应及凝灰质烃源岩发育模式[J]. 石油学报,2013,34(6): 1077-1087.

WANG Shurong, SONG Daofu, HE Dengfa. The enrichment effect of organic materials by volcanic ash in sediments of the Santanghu Basin and the evolutionary pattern of tuffaceous source rocks[J]. Acta Petrolei Sinica,2013,34(6):1077-1087.

- [22] 李玉婷,黄志龙,安成龙,等. 三塘湖盆地石炭系哈尔加乌组上、下段烃源岩特征及差异[J]. 天然气地球科学,2018,29(1):73-86.
 LI Yuting, HUANG Zhilong, AN Chenglong, et al. Characteristics and differences of source rocks in the lower and upper members of Carboniferous Ha'erjiawu Formation in the Malang sag of the Santanghu Basin, NW China[J]. Natural Gas Geoscience, 2018,29(1):73-86.
- [23] SONG Daofu, HE Dengfa, WANG Shurong. Source rock potential and organic geochemistry of carboniferous source rocks in Santanghu Basin, NW China[J]. Journal of Earth Science, 2013, 24(3):355-370.
- [24] 徐银波,毕彩芹,李锋,等. 三塘湖盆地石头梅地区巴油页1井二叠 系芦草沟组有机相分析[J]. 煤炭学报,2022,47(11):4094-4104.
 XU Yinbo, BI Caiqin, LI Feng, et al. Analysis of organic facies in Permian Lucaogou Formation in Shitoumei area of Santanghu Basin:a case from well Byy1[J]. Journal of China Coal Society, 2022,47(11):4094-4104.
- [25] PAN Yongshuai, HUANG Zhilong, LI Tianjun, et al. Environmental response to volcanic activity and its effect on organic matter enrichment in the Permian Lucaogou Formation of the Malang sag, Santanghu Basin, northwest China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 560: 110024.
- [26] ZHANG Shaohua, LIU Chiyang, LIANG Hao, et al. Paleoenvironmental conditions, organic matter accumulation, and unconventional hydrocarbon potential for the Permian Lucaogou Forma-

tion organic-rich rocks in Santanghu Basin, NW China[J]. International Journal of Coal Geology, 2018, 185:44-60.

- [27] 赵文智,邹才能,李建忠,等.中国陆上东、西部地区火山岩成藏 比较研究与意义[J].石油勘探与开发,2009,36(1):1-11. ZHAO Wenzhi,ZOU Caineng,LI Jianzhong, et al. Comparative study on volcanic hydrocarbon accumulations in western and eastern China and its significance[J]. Petroleum Exploration and Development,2009,36(1):1-11.
- [28] 司学强,王鑫,陈薇,等. 三塘湖盆地马朗凹陷哈尔加乌组火山岩 旋回与期次划分[J]. 地质科技情报,2012,31(6):74-79.
 SI Xueqiang, WANG Xin, CHEN Wei, et al. Division of volcanic cycles and stages of the Haerjiawu Formation in Malang depression, Santanghu Basin[J]. Geological Science and Technology Information,2012,31(6):74-79.
- [29] 侯连华,罗霞,王京红,等.火山岩风化壳及油气地质意义——以 新疆北部石炭系火山岩风化壳为例[J].石油勘探与开发,2013, 40(3):257-265.

HOU Lianhua,LUO Xia,WANG Jinghong,et al. Weathered volcanic crust and its petroleum geologic significance; a case study of the Carboniferous volcanic crust in northern Xinjiang[J]. Petroleum Exploration and Development,2013,40(3):257-265.

- [30] 柳波,吕延防,孟元林,等. 湖相纹层状细粒岩特征、成因模式及 其页岩油意义——以三塘湖盆地马朗凹陷二叠系芦草沟组为例
 [J].石油勘探与开发,2015,42(5):598-607.
 LIU Bo,LÜ Yanfang, MENG Yuanlin, et al. Petrologic characteristics and genetic model of lacustrine lamellar fine-grained rock and its significance for shale oil exploration; a case study of Permian Lucaogou Formation in Malang sag, Santanghu Basin, NW China[J].
 Petroleum Exploration and Development, 2015, 42(5): 598-607.
- [31] 梁世君,罗劝生,康积伦,等. 准噶尔盆地吉南凹陷萨探1井风险勘探突破及意义[J]. 中国石油勘探,2021,26(4):72-83.
 LIANG Shijun, LUO Quansheng, KANG Jilun, et al. Break-through and significance of risk exploration in Well Satan 1 in Jinan sag, Junggar Basin[J]. China Petroleum Exploration, 2021, 26(4):72-83.
- [32] 匡立春,温声明,李树新,等.低煤阶煤层气成藏机制与勘探突 破——以吐哈—三塘湖盆地为例[J].天然气工业,2022,42(6): 33-42.

KUANG Lichun, WEN Shengming, LI Shuxin, et al. Accumulation mechanism and exploration breakthrough of low-rank CBM in the Tuha-Santanghu Basin[J]. Natural Gas Industry, 2022, 42(6): 33-42.

- [33] 王双明,师庆民,王生全,等. 富油煤的油气资源属性与绿色低碳 开发[J]. 煤炭学报,2021,46(5):1165-1177.
 WANG Shuangming, SHI Qingmin, WANG Shengquan, et al. Resource property and exploitation concepts with green and lowcarbon of tar-rich coal as coal-based oil and gas[J]. Journal of China Coal Society,2021,46(5):1165-1177.
- [34] 东振,张梦媛,陈艳鹏,等.三塘湖-吐哈盆地富油煤赋存特征与资源潜力分析[J].煤炭学报,2023,48(10):1-16.
 DONG Zhen,ZHANG Mengyuan,CHEN Yanpeng, et al. Analy-

sis on the occurrence characteristics and resource potential of tarrich coal in Santanghu and Turpan-Hami Basins[J]. Journal of China Coal Society,2023,48(10):1-16.

- [35] 何海清,范土芝,郭绪杰,等.中国石油"十三五"油气勘探重大成 果与"十四五"发展战略[J].中国石油勘探,2021,26(1):17-30.
 HE Haiqing,FAN Tuzhi,GUO Xujie,et al. Major achievements in oil and gas exploration of PetroChina during the 13th Five-Year Plan period and its development strategy for the 14th Five-Year Plan[J]. China Petroleum Exploration,2021,26(1):17-30.
- [36] 贾承造,魏国齐,李本亮,等.中国中西部两期前陆盆地的形成及 其控气作用[J].石油学报,2003,24(2):13-17.
 JIA Chengzao,WEI Guoqi,LI Benliang, et al. Tectonic evolution of two-epoch foreland basins and its control for natural gas accumulation in China's mid-western areas[J]. Acta Petrolei Sinica, 2003,24(2):13-17.
- [37] 黄卫东,李新宁,李留中,等. 三塘湖盆地煤层气资源勘探前景分析[J]. 天然气地球科学,2011,22(4):733-737.
 HUANG Weidong,LI Xingning,LI Liuzhong, et al. Prospect of coalbed methane exploration in Santanghu Basin[J]. Natural Gas Geoscience,2011,22(4):733-737.
- [38] 金之钧,白振瑞,高波,等.中国迎来页岩油气革命了吗? [J].石 油与天然气地质,2019,40(3):451-458.

JIN Zhijun, BAI Zhenrui, GAO Bo, et al. Has China ushered in the shale oil and gas revolution? [J]. Oil & Gas Geology, 2019, 40(3):451-458.

- [39] 陈振岩,仇劲涛,王璞珥,等.主成盆期火山岩与油气成藏关系探 讨[J].沉积学报,2011,29(4):798-808.
 CHEN Zhenyan, QIU Jintao, WANG Pujun, et al. Relationship between volcanic rocks and hydrocarbon accumulation during dominant period of basin formation in Liaohe depression[J]. Acta Sedimentologica Sinica,2011,29(4):798-808.
- [40] 支东明,唐勇,杨智峰,等. 准噶尔盆地吉木萨尔凹陷陆相页岩油地 质特征与聚集机理[J]. 石油与天然气地质,2019,40(3):524-534. ZHI Dongming, TANG Yong, YANG Zhifeng, et al. Geological characteristics and accumulation mechanism of continental shale oil in Jimusaer sag,Junggar Basin[J]. Oil & Gas Geology,2019, 40(3):524-534.
- [41] 付德亮,段中会,杨甫,等. 富油煤钻井式地下原位热解提取煤基油 气资源的几个关键问题[J]. 煤炭学报,2023,48(4):1759-1772.
 FU Deliang,DUAN Zhonghui,YANG Fu,et al. Key problems in in-situ pyrolysis of tar-rich coal drilling for extraction of coalbased oil and gas resources[J]. Journal of China Coal Society, 2023,48(4):1759-1772.
 - (收稿日期 2023-08-22 改回日期 2023-09-15 编辑 雷永良)

(上接第51页)

- [49] 陈思谦,周义军,郭庆,等.鄂尔多斯盆地中新元古界拗拉槽特征及勘探潜力[J].地质科学,2020,55(3):692-702.
 CHEN Siqian,ZHOU Yijun,GUO Qing,et al. Characteristics and exploration potential of the Mid-Late Proterozoic aulacogens in Ordos Basin[J]. Chinese Journal of Geology,2020,55(3):692-702.
- [50] 张威,闫相宾,刘超英,等.鄂尔多斯盆地北部中元古界潜山圈闭 特征与成藏模式[J].地质学报,2023,97(1):168-178.
 ZHANG Wei,YAN Xiangbin,LIU Chaoying, et al. Characteristics and reservoir forming model of Mesoproterozoic buried hill traps in the northern Ordos Basin[J]. Acta Geologica Sinica, 2023,97(1):168-178.
- [51] 杨智,邹才能,陈建军,等."进(近)源找油":油气地质理论创新 与重点领域勘探思考[J].石油学报,2021,42(10):1310-1324.
 YANG Zhi,ZOU Caineng, CHEN Jianjun, et al. "Exploring petroleum inside or near the source kitchen": innovations in petro-

leum geology theory and reflections on hydrocarbon exploration in key fields[J]. Acta Petrolei Sinica,2021,42(10):1310-1324.

[52] 姜福杰,贾承造,庞雄奇,等.鄂尔多斯盆地上古生界全油气系统成 藏特征与天然气富集地质模式[J].石油勘探与开发,2023,50(2): 250-261.

JIANG Fujie, JIA Chengzao, PANG Xiongqi, et al. Upper Paleozoic total petroleum system and geological model of natural gas enrichment in Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2023, 50(2):250-261.

[53] 李辛子,王运海,姜昭琛,等.深部煤层气勘探开发进展与研究 [J].煤炭学报,2016,41(1):24-31.

LI Xinzi, WANG Yunhai, JIANG Zhaochen, et al. Progress and study on exploration and production for deep coalbed methane [J]. Journal of China Coal Society, 2016, 41(1): 24-31.

(收稿日期 2023-10-10 改回日期 2023-12-09 编辑 雷永良)